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A Novel Approach to Model Error Modelling using the
Expectation-Maximization Algorithm

Ramón A. Delgado, Graham C. Goodwin, Rodrigo Carvajal
and Juan C. Agüero.

Abstract— In this paper we develop a novel approach to
model error modelling. There are natural links to others
recently developed ideas. However, here we make several key
departures, namely (i) we focus on relative errors; (ii) we
use a broad class of model error description which includes,
inter alia, the earlier idea of stochastic embedding; (iii) we
estimate both, the nominal model and undermodelling simul-
taneously using the Expectation-Maximization (EM) algorithm.
Simulation studies illustrate the performance of the proposed
technique.

Index Terms— model error modelling, system identification,
EM algorithm.

I. INTRODUCTION

The idea of modelling error has been a central theme
of statistics, time series analysis, econometrics and system
identification (see e.g. [1]–[3] and the reference therein). In
practice, physical systems are more complex than models
that describe the systems behaviour (see e.g. [2], [4]). This
fact is well recognized in the areas of system and control,
where robustness to model inadequacy has been a key focus.

Most methods in classical estimation theory treat mod-
elling errors as additive noise. On the other hand, multiplica-
tive error is recognized as an useful error model description
[5]–[7].

Uncertainty modelling have attracted increasing attention
in the past 20 years, were methods such as Set Membership,
Stochastic Embedding and Model Error Modelling has been
developed. The Set membership (SM) approach (see e.g.
[8], [9]), deals with the problem of “bounded but unknown
errors” in a deterministic framework. SM delivers a set of
possible solutions, and turn the focus into the “worst-case”
model.

On the other hand, a probabilistic framework was con-
sidered in [10]–[13], where a set of possible solutions
can be found based on finite sample properties. Moreover,
confidence set were found using Sub-sampling, Resampling
and/or Bootstrapping techniques (see e.g. [14]–[17]).

In [18] it was shown that the prior information of the
smoothness in the impulse response can be used to estimate
bounds to the set of possible solutions.

The methods mentioned above make few assumptions
about the model error. On the other hand, some approaches
assign a model to the model error. For example, in the
Model Error Modelling (MEM) method [19], the model error
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description is obtained from the residues, ε = y−ŷ. In MEM,
the model error description is considered as the sum of two
terms. The first term is a function of the input signal, and
the second term is a function of a random process.

Another method that assigns a model to the model error
corresponds to the Stochastic Embedding (SE) approach
(see e.g. [20], [21]). This approach proposes to embed the
nominal model structure into a larger class of models. In this
sense, a characterization of the undermodelling is included as
a realization of a stochastic process. Moreover, the estimation
is carried out in a two step procedure. (i) obtaining a non
parametric estimation of the frequency response, then (ii) the
parametric model is obtained. In SE the nominal model is
obtained by using Least Squares. This limits the complexity
of the models that can be handled. For a comparison between
SE, SM and MEM see [22].

The key difficulty in undermodelling description is finding
a satisfactory, broad, and systematic method to describe the
model error. In this paper we propose a systematic method-
ology to describe a broad class of model uncertainties. The
main idea is to treat the model uncertainty as a realization of
a stochastic process. The estimation problem is solved using
an Expectation-Maximization (EM) algorithm, estimating the
nominal and uncertainty models simultaneously.

The layout of the remainder of the paper is as follows: In
section II we review MEM and SE. In section III we present
a description of the model of interest in our approach. In
section IV the estimation algorithm is described, and the
main result is presented. In section V we show a numerical
example. Finally, we draw conclusions in section VI.

II. MODEL ERROR MODELLING AND STOCHASTIC
EMBEDDING

In this section we present a brief description of the MEM,
and the SE approaches.

A. Model Error Modelling

In MEM, the dynamic system G(β, q) corresponds to a
model class parametrized by β ∈ Ω, where Ω is a constraint
set in the parameter space, and q is the forward shift operator.
The system output is represented by

yt = G(β, q)ut + vt, (1)

where ut is the input signal, vt is additive noise and yt the
measured output, t = 0, 1, . . . , N − 1. By minimizing a cost
function, such as the utilized in Prediction Error Method
(PEM) [23], it is possible to obtain an estimate of the system



parameters, denoted by β̂. This estimate is then utilized to
obtain the model errors (residues) of the estimates (see e.g.
[19])

εt = yt −G(β̂, q)ut. (2)

Next, the following model structure is assigned to the
residues

εt = F (γ, q)ut +H(γ, q)wt, (3)

where F (γ, q), and H(γ, q) are rational transfer function in
the operator q, and parametrized by γ ∈ Γ. The parameters of
the error model in (3) are then estimated using an estimation
procedure such as PEM.

This procedure provides a confidence set that can be used
for model validation or for an specific application, such as
robust control.

B. Stochastic Embedding

The SE approach treats both noise and undermodelling as
stochastic process.

In [20] the SE approach considers additive undermod-
elling. However, in [21] the undermodelling is described as
a multiplicative error in the form G = Go(1 + G∆) where
Go is the nominal model and G∆ is the model uncertainty.

When the undermodelling is considered as multiplicative
noise, the estimation procedure is given as follows. Consider
the input signal as a finite sum of cosine functions [21]

ut =

m∑
r=1

akcos(ωrt), (4)

where m is the number of elements in the summation, ωr is
the r-th normalized discrete frequency given by ωr = 2πkr

N ,
kr ∈ {1, . . . , N}, and m ≤ N . The periodic input, ut is used
to obtain a point (non-parametric) estimate of the transfer
function of the system, g(jωr), ∀r , and its associated
measurement errors at each ωr of the (not necessarily equally
spaces) frequencies set {ω1, ω2, . . . , ωm}. Then, these fre-
quency domain estimates are used to obtain a parametric
model of g(jωr) by estimating the parameters that define it,
and the parameters of the embedded stochastic process that
represent the undermodelling.

First, assuming that the measurements are obtained un-
der steady state conditions, the sampled output response is
expressed as

yt =

m∑
r=1

arg
r(ωr) cos(ωrt)−

m∑
r=1

arg
i(ωr) sin(ωrt) + vt,

(5)

where gr(ωr) and gi(ωr) are the real and imaginary parts of
g(jωr), i.e. g(jωr) = gr(ωr) + jgi(ωr). Also, vt is additive
white noise with variance σ2

v . Next, we rewrite (5) in vector
form as

Y = ΦG+ V, (6)

where

Y =
[
y1 y2 . . . yN

]T
, (7)

G =
[
gr(ω1) gi(ω1) . . . gr(ωm) gi(ωm)

]T
, (8)

Φ =


cos(ω1) sin(ω1) . . . sin(ωm)
cos(ω12) sin(ω12) . . . sin(ωm2)

...
...

. . .
...

cos(ω1N) sin(ω1N) . . . sin(ωmN)

 , (9)

× diag[a1,−a1, a2,−a2, . . . , am,−am], (10)

V =
[
v1 v2 . . . vN

]T
. (11)

Then, an unbiased estimate of G is given by

Ĝ =


ĝr(ω1)
ĝi(ω1)

...
ĝr(ωm)
ĝi(ωm)

 = (ΦTΦ)−1ΦTY. (12)

The estimate ĝ(jω) is represented in terms of a given
set of basis functions b1(jω), . . . , bp(jω). We define the
vectors Br(ω) = [br1(ω), . . . , brp(ω)] and Bi(ω) =
[bi1(ω), . . . , bip(ω)] containing the real and imaginary parts of
the basis function. We denote by θ the vector containing the
coefficient of the basis functions that describe the nominal
model, and by θ̄ the vector of coefficients of the basis
functions that describe the undermodelling. Thus, we can
represent our system as

Ĝ = Bθ + ΛBθ̄ + G̃, (13)

where

B =
[
Br(ω1) Bi(ω1) . . . Br(ωm) Bi(ωm)

]T
(14)

G̃ =
[
g̃r(ω1) g̃i(ω1) . . . g̃r(ωm) g̃i(ωm)

]T
, (15)

Λ = diag[λr(ω1), λi(ω1), . . . , λr(ωm), λi(ωm)]. (16)

The noise signals {g̃r} and {g̃i} in (15), are uncorrelated
white noises having variance 2σ2

v/(a
2
rN). The random pro-

cess {λr} and {λi} in (16) are two independent random walk
process. A different model can be considered assuming that
{λr} and {λi} are two independent integrated random walks.
For more details see [21].

Remark 1: In order to incorporate the undermodelling as a
multiplicative error, θ = θ̄ must be satisfied in (13). However,
if this equality is satisfied, then the estimation problem is
difficult, because the matrix of regressors ΛB is a function of
the undermodelling. For this reason, the estimation is carried
out in two steps. First, an estimate θ̂ of θ is obtained. Next,
the estimation of the undermodelling variance is obtained
considering that θ̄ = θ̂. �

III. MODEL DESCRIPTION

Consider the following description of the model

G(jωk) = Go(jωk)(1 +G∆(jωk)), (17)



and the corresponding data generating system

Y (jωk) = G(jωk)U(jωk) + V (jωk), (18)

where ωk = 2πk
N , Y (jωk) and U(jωk) are the Discrete

Fourier Transform of the measurement and the input sig-
nal, respectively. Moreover, V (jωk) and G∆(jωk) are re-
alizations of random process, with probability distributions
p(G∆(jωk)) and p(V (jωk)), respectively.

This representation of G∆(jωk) as a realization of a
random process allow the representation of a class of possible
models characterized by Go(jωk) and p(G∆(jωk)).

Remark 2: The assumption that G∆(jωk) is a realization
of a stochastic process suggest that when collecting data
multiple realizations of uncertainty must be collected. �
In order to simplify the notation, we denote G

(p)
∆,k ,

G∆(jωk)(p), G(p)
∆ = {G∆,k}Lk=0, Y (p)

k , Y (jωk)(p) and
U

(p)
k , U(jωk)(p).

IV. EM-BASED ESTIMATION

In this section, we provide a description of the estimation
algorithm that is based on the Expectation-Maximization
(EM) algorithm [24].

The EM algorithm has been used to identify different
classes of dynamic systems, such as, continuous time systems
using sampled-data [25], finite impulse response systems
using quantized systems [26], state-space systems using
incomplete data [27], channel estimation in telecommunica-
tions [28], bilinear state-space systems [29], and non-linear
state-space systems [30].

The EM algorithm is an iterative two step procedure
[24] where the concept of complete data is introduced. The
complete data is composed of the measured data, Y , and also
an unmeasured data set known as the hidden data, X . Then,
(loosely speaking) one estimates the hidden data based on the
current parameter estimate (in the Expectation step, E-step)
and then updates the parameters by maximizing a function
that depends on the joint probability density function (pdf)
of the hidden data and the measurements evaluated at the
estimated hidden data (in a Maximization step, M-step).

In detail, given a current estime θ̂i ∈ Ω, where Ω is the
constraint set in the parameter space, an iteration of the EM
algorithm is defined by:

E-step

Q(θ, θ̂i) = E{log p(Y,X|θ)|Y, θ̂i}. (19)

M-step

θ̂i+1 = arg max
θ∈Ω
Q(θ, θ̂i). (20)

where p(Y,X|θ) is the joint probability density function
(pdf) of Y and X given θ.

For the development of the algorithm we consider
G∆(jωk) as the hidden variable.

Lemma 1: Consider the system given by (17)-(18), and
that G∆ ∼ p(G∆) is the hidden variable in the EM
algorithm. Also consider that the data is collected from
Nexp independent experiments, i.e. {G(p)

∆ ,Y(p)}Nexp

p=1 . Then

the auxiliary function Q(θ, θ̂i) in the EM algorithm is given
by

Q(θ, θ̂i) =

Nexp∑
p=1

E
{

log p(Y(p)|G(p)
∆ , θ)|Y(p), θ̂i

}

+

Nexp∑
p=1

E
{

log p(G
(p)
∆ |θ)|Y

(p), θ̂i

}
(21)

Proof: Following some ideas developed in [31], we
rewrite (19) to consider all the experiments as

Q(θ, θ̂i) =E
{
log p

(
{Y(p), G

(p)
∆ }

Nexp

p=1 |θ
) ∣∣∣{Y(p)}Nexp

p=1 , θ̂i
}
.

(22)

Given that the experiments are independent, using Bayes’
theorem, we have that

Q(θ, θ̂i) =

Nexp∑
p=1

E
{

log p
(
Y(p), G

(p)
∆ |θ

) ∣∣∣Y(p), θ̂i

}
, (23)

and using Bayes’ theorem we express log p(Y(p), G
(p)
∆

∣∣∣θ) as

log p(Y(p), G
(p)
∆ |θ) = log p(Y(p)|G(p)

∆ |θ) + log p(G
(p)
∆ |θ).

(24)

Finally, replacing (24) in (23), the result in (21) follows.

In particular, when G
(p)
∆,k+1 and Y

(p)
k are independent,

proper and Gaussian distributed [32], then, the joint pdf of
Y(p) and G(p)

∆ is given by

p(Y(p), G
(p)
∆ |θ) =

L−1∏
k=0

p
(
G

(p)
∆,k+1, Y

(p)
k

∣∣∣G(p)
∆,k, θ

)
p(G

(p)
∆,0),

(25)

and the joint pdf of G(p)
∆,k+1 and Y (p)

k is given by

p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k, θ

)
∼ Np

([
µ

(p)
∆,k

µ
(p)
y,k

]
;

[
σ2

∆,k 0

0 σ2
y,k

])
(26)

where Np(·, ·) represents a proper Gaussian distribution, and

G
(p)
∆,0 ∼ Np(µ

(p)
∆,−1;σ2

∆,−1). (27)

Corollary 1: Consider that the pdf of the complete data
is given by (25)-(26), and G(p)

∆,0 is given by (27). Then, the
auxiliary function Q(θ, θ̂i) of the EM algorithm is given by



(excluding constant terms)

Q(θ, θ̂i) = −Nexp

(
L−1∑
k=0

log σ2
∆,k +

L−1∑
k=0

log σ2
y,k + log σ2

∆,−1

)

−
Nexp∑
p=1

L−1∑
k=0

[
1

σ2
∆,k

·E
{
(G

(p)
∆,k+1 − µ

(p)
∆,k)(G

(p)
∆,k − µ

(p)
∆,k)

∗
∣∣∣Y(p), θ̂i

}]
−

Nexp∑
p=1

L−1∑
k=0

1

σ2
y,k

E
{
(Y

(p)
k − µ(p)

y,k)(Y
(p)
k − µ(p)

y,k)
∗
∣∣∣Y(p), θ̂i

}

−
Nexp∑
p=1

1

σ2
∆,−1

(28)

×E
{
(G

(p)
∆,0 − µ

(p)
∆,−1)(G

(p)
∆,0 − µ

(p)
∆,−1)

∗
∣∣∣Y(p), θ̂i

}
, (29)

where ∗ denotes the complex conjugate.
Proof: From (19) and (25) we have that

Q(θ, θ̂i)=
Nexp∑
p=1

E

{
L−1∑
k=0

log p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k

)∣∣∣Y(p), θ̂i

}

+

Nexp∑
p=1

E
{
log p(G

(p)
∆,0)|Y

(p), θ̂i
}
. (30)

From (26) we deduce the following

log p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k, θ

)
= − log π2

− log det

([
σ2

∆,k 0

0 σ2
y,k

])

−

([
G

(p)
∆,k+1

Y
(p)
k

]
−

[
µ

(p)
∆,k+1

µ
(p)
y,k

])H [
σ2

∆,k 0

0 σ2
y,k

]−1

×

([
G

(p)
∆,k+1

Y
(p)
k

]
−

[
µ

(p)
∆,k+1

µ
(p)
y,k

])
,

= − log π2 − log σ2
∆,k − log detσ2

y,k

− 1

σ2
∆,k

(G
(p)
∆,k+1 − µ

(p)
∆,k)∗(G

(p)
∆,k+1 − µ

(p)
∆,k)

− 1

σ2
y,k

(Y
(p)
k − µ(p)

y,k)∗(Y
(p)
k − µ(p)

y,k). (31)

In a similar way, for G(p)
∆,0, we have:

log p(G
(p)
∆,0) =− log π − log detσ2

∆,−1

− 1

σ2
∆,−1

(G
(p)
∆,0 − µ

(p)
∆,−1)∗(G

(p)
∆,0 − µ

(p)
∆,−1),

(32)

then replacing back (31) and (32) in (30) we obtain (29).
Once Q(θ, θ̂i) has been calculated, we can maximize it using
standard optimization tools (e.g. Newton-Raphson method).

Remark 3: The expected values over the hidden variables,
given that Y is available, can be obtained, in general, by
using the Kalman smoother algorithm (for more details, see
e.g [27], [29], [33], [34]). �

In practice, due to physical properties of real systems,
typical error bounds must roughly grow with the frequency

[35]. To consider this, the stochastic process G∆,k can be
modelled as a random walk in the frequency domain [21] .
In this section, we explore this idea, and consider that G̃∆ is
a random walk in the frequency domain, with G∆(jω0) = 0.
Then (17) and (18) can be rewritten as

G
(p)
∆,k+1 = G

(p)
∆,k +W

(p)
k , (33)

Y
(p)
k = G

(p)
k (β)(1 +G

(p)
∆,k)U

(p)
k + V

(p)
k , (34)

where β ∈ Ω contains the parameters of the nominal
model, and W (p)

k and V (p)
k are two independent proper white

Gaussian noise sequences, with mean and variance given by:[
W

(p)
k

V
(p)
k

]
∼ Np

(
0;

[
σ2
w 0
0 σ2

v

])
. (35)

We are interested in estimating the nominal model param-
eters β, and the covariances γ = [ σ2

w σ2
v ]T . For

simplicity, we denote the parameters to be estimated by
θ = [ βT γT ]T .

Lemma 2: Consider the system given by (33)-(34), where
the random noise sequences are given by (35). The auxil-
iary function Q(p)(θ, θ̂i), for the experiment p, of the EM
algorithm is given by,

Q(p)(θ, θ̂i) = −L log σ2
w − L log σ2

v

− 1

σ2
w

L−1∑
k=0

[
E
{
G

(p)
∆,k+1G

(p)∗
∆,k+1|Y

(p), θ̂i

}
− 2Re

{
E
{
G

(p)
∆,k+1G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

}]
+

1

σ2
v

L∑
k=0

[
|Y (p)
k |

2 − 2Re
{
Y

(p)
k U

(p)∗
k Gk(β)∗

}
− 2Re

{
Y

(p)
k E

{
G

(p)∗
∆,k |Y

(p), θ̂i

}
Gk(β)∗U

(p)∗
k

}
+ |Gk(β)U

(p)
k |

2
(

1 + 2Re
{
E
{
G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

})]
, (36)

where | · | and Re {·} denote the magnitude and the real part
of a complex number, respectively.

Proof: In (29) consider that the term inside of the first
summation is

µ
(p)
∆,k = G

(p)
∆,k, σ2

∆,k = σ2
w,

µ
(p)
y,k = Gk(β)(1 +G

(p)
∆,k)U

(p)
k , σ2

y,k = σ2
v ,

and G(p)
∆,0 = 0.

Then we have that
L−1∑
k=0

log σ2
∆,k =L log σ2

w,

L−1∑
k=0

log σ2
y,k =L log σ2

v .



The term in the first summation in (29) is, then, given by

E
{

(G
(p)
∆,k+1 − µ

(p)
∆,k)(G

(p)
∆,k − µ∆,k)(p)∗|Y(p), θ̂i

}
=

E
{
G

(p)
∆,k+1G

(p)∗
∆,k+1|Y

(p), θ̂i

}
−E

{
G

(p)
∆,k+1G

(p)∗
∆,k |Y

(p), θ̂i

}
−E

{
G

(p)
∆,kG

(p)∗
∆,k+1|Y

(p), θ̂i

}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

}
,

which is equivalent to the term inside of the first summation
in (36). On the other hand, the term in the second summation
in (29) can be expanded as

E
{

(Y
(p)
k − µ(p)

y,k)(Y
(p)
k − µ(p)

y,k)∗|Y(p), θ̂i

}
= |Y (p)

k |
2

− Y (p)
k U

(p)∗
k Gk(β)∗ −Gk(β)U

(p)
k Y

(p)∗
k

− Y (p)
k E

{
G

(p)∗
∆,k |Y

(p), θ̂i

}
Gk(β)∗U

(p)∗
k

−Gk(β)E
{
G

(p)
∆,k|Y

(p), θ̂i

}
U

(p)
k Y

(p)∗
k

+ |Gk(β)U
(p)
k |

2
(

1 + 2Re
{
E
{
G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

})
.

Which is equivalent to the term in the second summation
in (36). Moreover, given that G(p)

∆,0 is deterministic, the last
term in (29) is not included in (36).

The computation of E
{
G∆,kG

∗
∆,k|Y, θ̂i

}
,

E
{
G∆,k+1G

∗
∆,k|Y, θ̂i

}
and E

{
G∆,k|Y, θ̂i

}
is carry

out using the Kalman smoother (see Appendix).
Remark 4: The extension of Lemma 2, for V (jωk) in (34)

being coloured noise, can be done by following the ideas in
[36]. �

V. NUMERICAL EXAMPLE

Consider the system defined in (33) and (34) where

G(θ, z) =
0.12

z2 − 1.3z + 0.42
, (37)

and σ2
w = 4 · 10−4, σ2

v = 0.1. The input signal consist of
L = 50 complex-valued samples, {Uk}L−1

k=0 , generated as
a proper Gaussian sequence with zero mean and variance
σ2
u = 4.
We run Nexp = 20 different experiments each with L =

50 samples, which correspond to Nexp realizations of the
noise and the uncertainty.

Figure 1 shows the magnitude and phase of the frequency
response of different realizations of undermodelling, G(i)

∆,k ,
and the frequency response of the estimated model Gk(β̂).
In Figure 1(b) the magnitude of Gk and Gk(β̂) is shown. We
can see that the estimated model follows the characteristics
of the realizations of the true system (37). The estimated
model is given by G(β̂, z) = 0.116/(z2 − 1.307z + 0.423),
σ̂2
w = 0.0033, and σ̂2

v = 0.0997.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have applied a novel approach to Model
Error Modelling based on the EM algorithm. The proposed
method can simultaneously estimate the nominal and the
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Fig. 1. Magnitude and Phase of the frequency response of different
realizations of undermodelling (light blue and continuous line), and the
frequency response of the estimated model (red-dashed line).

uncertainty models. Moreover, the estimation algorithm can
handle general uncertainty models.

We have presented a numerical example that illustrates the
benefits of the proposed approach for system identification.

Future work include a comparison of the proposed ap-
proach with other methods, and analysis of performance
under several types of uncertainty.

APPENDIX

Kalman Smoother

In this appendix, we describe the Kalman smoother algo-
rithm. Consider the following system

xt = Axt−1 +Bt + wt, (38)
yt = Ctxt +Dt + vt, (39)

where measurements of yt are available for t = 1, . . . , n.
The Kalman smoother provides estimates for xt based on
the entire data sample {yt}nt=1, for t ≤ n. The Kalman
smoother equations are based on the quantities computed by
the Kalman Filter. We first describe the Kalman filter, and
later we present the Kalman smoother.

We denote by xt|s , E {xt|ys, ys−1, . . . , y1} and by
Pt|s = E

{
(xt − xt|s)(xt − xt|s)H |ys, ys−1, . . . , y1

}
.

We assume that the initial condition x0|0 has mean µ and
variance P0. Then the Kalman Filter for t = 1, . . . , n is given
by (see e.g. [37])

xt|t−1 = Axt−1|t−1 +Bt, (40)

Pt|t−1 = APt−1|t−1A
T + Σw, (41)



with

xt|t = xt|t−1 +Kt(yt − Ctxt|t−1 −Dt), (42)
Pt|t = [I −KtCt]Pt|t−1, (43)

where

Kt = Pt|t−1C
H
t [CtPt|t−1C

H
t + Σv]

−1. (44)

Once the quantities of the Kalman filter has been computed.
The Kalman smoother can be computed for t = n, n −
1, . . . , 1 by (see e.g. [37])

xt−1|n = xt−1|t−1 + Jt(xt|n − xt|t−1), (45)

Pt−1|n = Pt−1|t−1 + Jt−1(Pt|n − Pt|t−1)JHt−1, (46)

where

Jt−1 = Pt−1|t−1A
T [Pt|t−1]−1. (47)

In our case, we need to compute Mt|n =
E
{

(xt − xt|n)(xt−1 − xt−1|n)H |yn, yn−1, . . . , y1

}
. This

expectation can be obtained using the quantities in the
Kalman smoothing, by defining

Mn|n = [I −KnCn]APn−1|n−1, (48)

and for t = n, n− 1, . . . , 2

Mt−1,|n = Pt−1|t−1J
H
t−2 + Jt−1(Mt|n −APt−1|t−1)JHt−2.

(49)

For the system (33)-(34) we have: A = 1, Bt = 0, Ct =
Gt(β)Ut, and Dt = Gt(β)Ut.
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